NS102 Lecture 8 April 27, 2004

Why do the stars shine?

D

$$\tan \alpha = \frac{R}{D}$$

law of skinny triangles:

$$\tan \alpha = \sin \alpha = \alpha$$
 (in radians)

$$\alpha$$
 (in radians) = $\frac{R}{D}$

What's a radian?

 2π radians = 360 degrees

1 radian =
$$\frac{360}{2\pi}$$
 degrees = 60 degrees

0.01 radians
$$\times \frac{60 \text{ degrees}}{1 \text{ radian}} = 0.6 \text{ degrees}$$

= 0.05 radians

The skinny on traingles

α (degrees)	α (radians) = α (degrees) $\times \frac{2\pi}{360^{\circ}}$	$\tan \alpha = \alpha + \frac{\alpha^3}{3!} + \cdots$	$\sin \alpha = \frac{\alpha^3}{3!} + \cdots$
3°	0.05236	0.05241	0.05234
10°	0.17453	0.17633	0.17365
30°	0.52360	0.57735	0.50000

0.98481

-5.67128

1.74533

100°

70 60 50 E FCLT 30 TEPOLFDZ 20 LPCTZDBFEO 15 ZOECFLDPBT 10 7 ETOLEBZEFDC B O F C P T F B L F B F Z C O P F

How good are your eyes?

$$\alpha = 0.02^{\circ} \times \frac{60 \text{ minutes}}{1 \text{ degree}} = 1'$$

D

$$\alpha = \frac{1 \text{ AU}}{D}$$
 radians X $\frac{60 \text{ degrees}}{\text{radian}}$

$$\alpha = \frac{60 \text{ AU}}{D}$$
 degrees X $\frac{60 \text{ minutes}}{1 \text{ degree}}$

$$\alpha = \frac{3600 \text{ AU}}{D}$$
 minutes X $\frac{60 \text{ seconds}}{1 \text{ minute}}$

$$\alpha = \frac{206,264.8 \text{ AU}}{D}$$
 seconds

$$\alpha = \frac{1 \text{ AU}}{D}$$
 radians

$$\alpha = \frac{206,264.8 \text{ AU}}{D}$$
 seconds

1 pc =
$$206,264.8$$
 AU = 3.26 light years = 10^{13} ($10,000,000,000,000$) miles

$$\alpha = \frac{pc}{D}$$
 seconds

$$D = \frac{\text{second}}{\alpha}$$

D seconds 200,000 AU parallax

D seconds
pc parallax

$$\frac{D}{pc} = \frac{seconds}{parallax}$$

star	parallax ('')	distance (pc)
α Centauri	0.75	1.3
Barnard's star	0.5	2.0
Sirius	0.4	2.5
Altair	0.2	5.0

Let's think for a second of arc

α	
	D

$$\alpha = \frac{1 \text{ cm}}{D}$$
 radians

$$\alpha = \frac{200,000 \text{ cm}}{D}$$
 seconds

$$\alpha = \frac{2 \text{ km}}{D}$$
 seconds

α	D
4"	½ km
2" 1"	1 km 2 km
0.1"	20 km
0.01"	200 km
0"	infinity

Twinkle, twinkle little star

Twinkle, twinkle little star

Hipparcos

Planet Imager

Formation Flying

Launch: 2030

32 X 8 meter mirrors Baseline = 6000 km

Planet	angular diameter (in minutes)		
	Ptolemy	True	
Mercury	2	0.01	
Venus	3	0.5	
Mars	1.5	0.15	
Jupiter	2.5	0.4	
Saturn	1.7	0.2	
Bright stars	1.5	~0	

How far away are stars? How big are stars?

Earth

30

Both objects have an angular diameter of 3°

They have different apparent brightness
They have different colors
They move
They change in brightness

Loudness: Intensity: energy per second in ear

I_{THRESHOLD} = energy per second in ear at threshold of hearing

I_{PAIN}

= energy per second in ear at threshold of pain

 $I_{PAIN}/I_{THRESHOLD} = ?$

Loudness: Intensity: energy per second in ear

```
I<sub>THRESHOLD</sub> = energy per second in ear
                      at threshold of hearing
                   = energy per second in ear
        PAIN
                      at threshold of pain
I_{PAIN} / I_{THRESHOLD} = 10^{12} !!!
                1-100 (10^2)
              100 - 1,000 (10^3)
           1,000 - 1,000,000 (10^6)
      1,000,000 - 1,000,000,000 (10^9)
 1,000,000,000 - 1,000,000,000,000 (10^{12})
```


Intensity: energy per time per area

$$I = \frac{Energy}{Time Area}$$

$$I_0$$
 = threshold of hearing dB = 10 log (I/ I_0)
$$I/I_0 = 10^{12}$$

$$Iog (10^{12}) = 12$$

$$dB = 10 X 12 = 120$$

lo is intensity at threshold of hearing

I/I ₀	log (I/ I ₀)	$dB = 10 \log (I/I_0)$
10-2	-2	-20
1	0	0
10 ²	2	20
10 ⁶	6	60
10 ¹²	12	120
10 ²⁰	20	200

Difference of about 1 dB is about the smallest

Difference of about 1 dB is about the smallest change that can be noticed by the human ear
$$dB_1 = 10 \log \left(I_1/I_0 \right) \qquad dB_2 = 10 \log \left(I_2/I_0 \right)$$

$$dB_1 - dB_2 = 10 \log \left(I_1/I_0 \right) - 10 \log \left(I_2/I_0 \right)$$

$$= 10 \left[\log \left(I_1/I_0 \right) - \log \left(I_2/I_0 \right) \right]$$

$$= 10 \left[\log(I_1/I_0) - \log(I_2/I_0) \right]$$

$$= 10 \left[\log(I_1) - \log(I_0) - \log(I_2) + \log(I_0) \right]$$

$$= 10 \left[\log(I_1) - \log(I_1) \right] = 10 \log(I_1/I_1)$$

$$= 10 \left[\log(I_1) - \log(I_2) \right] = 10 \log(I_1/I_2)$$

$$1 = 10 \log(I/I)$$

$$1 = 10 \log(I_1/I_2)$$

$$1 = 10 \log(I_1/I_2)$$

$$0.1 = \log(I_1/I_2) \to 10^{0.1} = I_1/I_2 \to 1.25 = I_1/I_2$$

Intensity: energy per time per area

$$I = \frac{Energy}{Time Area}$$

Energy Time (Power)

measured in watts

Area

measured in cm²

Intensity in watts per cm²

Intensity: energy per time per area

$$I = \frac{power}{cm^2}$$

Power property of source

Intensity depends on power and distance between source and detector

Intensity = $\frac{\text{power}}{4\pi R^2}$

For light!!!

$$I = \frac{Energy}{Time Area}$$

Energy (Luminosity)

measured in watts

Area

measured in cm²

Intensity in watts per cm²

For light!!!

$$I = \frac{luminosity}{cm^2}$$

Luminosity property of source

Intensity depends on power and distance between source and detector

Intensity =
$$\frac{\text{luminosity}}{4\pi R^2}$$

